## SYNTHESIS OF 1-N-ACYL DERIVATIVES OF 3', 4'-DIDEOXY-6'-N-METHYL-KANAMYCIN B AND THEIR ANTIBACTERIAL ACTIVITIES

Sir:

As previously reported<sup>1)</sup>, 3', 4'-dideoxykanamycin B (DKB) is active against kanamycin-resistant strains which phosphorylate the 3'-hydroxyl group of kanamycins. However, DKB is enzymatically inactivated by 6'-Nacetylation<sup>2)</sup> and 2"-nucleotidylation.<sup>3~5)</sup> As reported in other papers,  $^{6,7)}$  1-N-( $\omega$ -amino- $\alpha$ hydroxyacyl) derivatives of DKB are active against resistant strains producing 3'-phosphotransferases<sup>8~10)</sup> and 2"-nucleotidyltransferase.<sup>3~5)</sup> In this communication, we report the syntheses of 1-N-(DL-isoseryl), 1-N-(L-isoseryl), 1-N-[(S)-4-amino-2-hydroxybutyryl] and 1-N-[(S)-5-amino-2-hydroxy-n-valeryl] derivatives of 3', 4'-dideoxy-6'-N-methylkanamycin B<sup>11)</sup> (abbreviated as DL-IS-MDKB, IS-MDKB, AHB-MDKB and AHV-MDKB, respectively) which inhibit resistant strains producing 6'-Nacetyltransferase. These derivatives are not affected by the other enzymes inactivating

deoxystreptamine-containing antibiotics.

3', 4'-Dideoxy-6'-N-methylkanamycin B (MDKB) (500 mg, 1.08 mmoles) prepared by the method of UMEZAWA et al.<sup>11)</sup> was partially acylated with BOC\* azide (465 mg, 3.24 m moles) in a mixture (55 ml) of water, pyridine and triethylamine (3:5:5 in volume) at room temperature for 28.5 hours. The evaporation of the reaction mixture afforded a yellowish powder (727 mg) which was a mixture of the mono-N- and di-N-BOC derivatives containing a trace of the tri-N-BOC derivative. Column chromatography on Amberlite CG-50 (NH4+ form) showed that the powder contained more than 20% of the 2', 6'-di-N-BOC derivative.\*\* Since complete purification was difficult, the powder without purification was used for 1-N-acylation with an equimolar amount of the N-hydroxysuccinimide ester of N-BOC-DL-isoserine,<sup>7)</sup> N-BOC-L-isoserine,<sup>7)</sup> N-BOC-(S)-4-amino-2-hydroxybutyric acid<sup>6,12</sup>) N-BOC-(S)-5-amino-2-hydroxy-n-valeric or acid\*\*\* in a mixture of water and dimethoxyethane at room temperature for  $18 \sim 24$  hours by a method similar to that described in a

| Derivative | mp (dec)               | $[\alpha]_{\rm D}$ in ${ m H_2O}$ | Molecular formula <sup>a</sup>          | Rf on<br>TLC <sup>b</sup> | MS of penta-<br>N-acetyl<br>deriv.° ( <i>m/e</i> ) | Activity (%) <sup>d</sup> |         |
|------------|------------------------|-----------------------------------|-----------------------------------------|---------------------------|----------------------------------------------------|---------------------------|---------|
|            |                        |                                   |                                         |                           |                                                    | B. sub.                   | E. coli |
| dl-IS-MDKB | $165 \sim 169^{\circ}$ | $+96^\circ$ at $24^\circ$         | $C_{22}H_{44}N_6O_{10}\!\cdot\!H_2CO_3$ | 0.51                      | 204,227,344                                        | 62                        | 105     |
| IS-MDKB    | $162 \sim 166^{\circ}$ | $+80^\circ$ at $24^\circ$         | $C_{22}H_{44}N_6O_{10}\!\cdot\!H_2CO_3$ | 0.51                      | 204,227,344                                        | 49                        | 94      |
| AHB-MDKB   | $158 \sim 161^\circ$   | $+71^{\circ}$ at $25^{\circ}$     | $C_{23}H_{46}N_6O_{10}\!\cdot\!H_2CO_3$ | 0.38                      | 204,227,358                                        | 187                       | 114     |
| AHV-MDKB   | 152~155°               | $+79^{\circ}$ at $24^{\circ}$     | $C_{24}H_{48}N_6O_{10}\!\cdot\!H_2CO_3$ | 0.39                      | 204,227,372                                        | 129                       | 92      |

Table 1. Properties of 1-N-acyl derivatives of 3',4'-dideoxy-6'-N-methylkanamycin B.

a Satisfactory elemental analyses were obtained for all compounds.

b Thin-layer chromatography on Silica gel G (Merck, Art. 5721) developed with butanol-ethanol-chloroform - 28 % ammonia (4:5:2:8 in volume), and detected by ninhydrin reaction.
c Penta-N-acetyl derivatives were prepared with acetic anhydride in methanol. Fragment peak at *m/e* 204 corresponds to the 3-amino-3-deoxy-α-D-glucose moiety; at *m/e* 227 to 2, 6-diamino-2, 3, 4, 6-tetradeoxy-6-N-methyl-α-D-erythro-hexopyranose moiety: at *m/e* 344, 358 and 372 to 1-N-(isoseryl)-, 1-N-(4-amino-2-hydroxybutyryl)- and 1-N-(5-amino-2-hydroxy-*n*-valeryl)-2-deoxy-streptamine moieties, respectively.

d The activities were compared by the cup plate method. Assay standard: 1-N-[(S)-4-amino-2-hydroxybutyryl]-3', 4'-dideoxykanamycin B<sup>e</sup>) (100 %). Test organisms: *Bacillus subtilis* PCI 219 and *Escherichia coli* K-12.

\* BOC: tert-butyloxycarbonyl group.

\*\* The 2', 6'-di-N-BOC-3', 4'-dideoxy-6'-N-methylkanamycin B showed Rf 0.60 by thin-layer chromatography on Silica gel G using butanol - ethanol - chloroform - 17% ammonia (4:5:2:3 in volume). The structure was confirmed by the pmr spectrum and the mass spectrum of the tri-N-acetyl derivative.

\*\*\* N-BOC-(S)-5-amino-2-hydroxy-n-valeric acid was prepared by preferential deamination of Lornithine monohydrochloride by the method of OHSHIRO et al.<sup>13</sup> followed by N-protection with tert-butyl S-4, 6-dimethylpyrimid-2-ylthiocarbonate.<sup>14</sup>

## VOL. XXVIII NO. 4

Table 2. The antimicrobial spectra of 3', 4'-dideoxy-6'-N-methylkanamycin B (MDKB) and its 1-N-acyl derivatives.

| -                                | Minimum inhibitory concentrations (mcg/ml) |         |              |              |       |  |  |
|----------------------------------|--------------------------------------------|---------|--------------|--------------|-------|--|--|
| Test organisms                   | dl-IS-<br>MDKB                             | IS-MDKB | AHB-<br>MDKB | AHV-<br>MDKB | MDKB  |  |  |
| Staphylococcus aureus FDA 209P   | 0.78                                       | <0.20   | 0.78         | 0.39         | <0.20 |  |  |
| S. aureus Smith                  | <0.20                                      | <0.20   | <0.20        | <0.20        | <0.20 |  |  |
| S. aureus Terajima               | <0.20                                      | <0.20   | <0.20        | <0.20        | <0.20 |  |  |
| Sarcina lutea PCI 1001           | 6.25                                       | 3.13    | 3.13         | 12.5         | 12.5  |  |  |
| Bacillus anthracis               | <0.20                                      | <0.20   | <0.20        | <0.20        | <0.20 |  |  |
| B. subtilis PCI 219              | <0.20                                      | <0.20   | <0.20        | <0.20        | <0.20 |  |  |
| B. subtilis NRRL B-558           | <0.20                                      | <0.20   | <0.20        | <0.20        | <0.20 |  |  |
| B. cereus ATCC 10702             | 3.13                                       | 1.56    | 3.13         | 1.56         | 1.56  |  |  |
| Corynebacterium bovis 1810       | 3.13                                       | 0.78    | 3.13         | 6.25         | 25    |  |  |
| Mycobacterium smegmatis ATCC 607 | 0.39                                       | 0.39    | 0.20         | 0.78         | 1.56  |  |  |
| Shigella dysenteriae JS 11910    | 6.25                                       | 3.13    | 3.13         | 3.13         | 6.25  |  |  |
| S. flexneri 4b JS 11811          | 3.13                                       | 1.56    | 3.13         | 3.13         | 3.13  |  |  |
| S. sonnei JS 11746               | 3.13                                       | 3.13    | 6.25         | 3.13         | 3.13  |  |  |
| Salmonella typhosa T-63          | 1.56                                       | 0.39    | 3.13         | 0.78         | 0.78  |  |  |
| S. enteritidis 1891              | 3.13                                       | 0.78    | 1.56         | 0.78         | 3.13  |  |  |
| Proteus vulgaris OX 19           | 1.56                                       | 0.78    | 1.56         | 0.78         | 1.56  |  |  |
| Klebsiella pneumoniae PCI 602    | 1.56                                       | 0.78    | 0.78         | 0.78         | 0.78  |  |  |
| K. pneumoniae 22 # 3038          | 3.13                                       | 1.56    | 3.13         | 3.13         | 25    |  |  |
| Escherichia coli NIHJ            | 1.56                                       | 1.56    | 1.56         | 0.78         | 3.13  |  |  |
| E. coli K-12                     | 1.56                                       | 0.78    | 0.78         | 0.78         | 1.56  |  |  |
| <i>E. coli</i> K-12 R5           | 3.13                                       | 1.56    | 1.56         | 1.56         | 3.13  |  |  |
| E. coli K-12 ML1629              | 1.56                                       | 1.56    | 1.56         | 0.78         | 3.13  |  |  |
| E. coli K-12 ML1630              | 3.13                                       | 1.56    | 0.78         | 1.56         | 6.25  |  |  |
| E. coli K-12 ML1410              | 3.13                                       | 1.56    | 1.56         | 1.56         | 3.13  |  |  |
| E. coli K-12 ML1410 R81          | 3.13                                       | 1.56    | 1.56         | 1.56         | 6.25  |  |  |
| E. coli LA290 R55                | 3.13                                       | 1.56    | 0.78         | 0.78         | 12.5  |  |  |
| E. coli LA290 R56                | 0.78                                       | 0.78    | 0.78         | 0.39         | 3.13  |  |  |
| E. coli LA290 R64                | 0.78                                       | 0.39    | 0.78         | 0.39         | 3.13  |  |  |
| E. coli W677                     | 1.56                                       | 0.78    | 0.78         | 0.78         | 1.56  |  |  |
| <i>E. coli</i> JR66/W677         | 3.13                                       | 1.56    | 3.13         | 1.56         | 25    |  |  |
| Pseudomonas aeruginosa A3        | 3.13                                       | 3.13    | 3.13         | 3.13         | 1.56  |  |  |
| P. aeruginosa No. 12             | 6.25                                       | 25      | 3.13         | 25           | 12.5  |  |  |
| P. aeruginosa TI-13              | 12.5                                       | 6.25    | 6.25         | 6.25         | 12.5  |  |  |
| P. aeruginosa GN315              | 12.5                                       | 25      | 6.25         | 12.5         | 12.5  |  |  |
| P. aeruginosa 99                 | 25                                         | 25      | 25           | 25           | 12.5  |  |  |

previous paper.<sup>6)</sup> The N-BOC groups of the acylated product were removed in 90 % tri-fluoroacetic acid at room temperature for 1 hour. The reaction mixture was concentrated to dryness, dissolved in water and charged on a column of Amberlite CG-50 (NH<sub>4</sub><sup>+</sup> form). After washing the column with five resin-volumes each of water and 0.3 N am-

monia, DL-IS-MDKB or IS-MDKB was eluted with 0.5 N ammonia, and AHB-MDKB or AHV-MDKB was eluted with 0.75 N ammonia. The eluate was cut into one-tenth resin volume fractions. These in fractions were tested by thin-layer chromatography (Rf values are shown in Table 1) and the activity against *Bacillus subtilis* PCI 219 and *Escherichia*  coli JR66/W677 was examined. Further purification of the products obtained from the active fractions was accomplished by column chromatography on silicic acid (Mallinckrodt, CC-7) developed with methanol-chloroform - 17% ammonia (4:1:2 in volume). The purified products DL-IS-MDKB, IS-MDKB, AHB-DKB and AHV-DKB were obtained as colorless carbonates in 4%, 7%, 3% and 3% yield, respectively, from MDKB.

The properties of the four derivatives described above are summarized in Table 1. The structures were confirmed by the pmr spectra, the mass spectra of the penta-Nacetyl derivatives (Table 1) and the acid hydrolysis. The method of synthesis described above is known to give 1-N-acyl derivatives in preference to the 3-N-acyl derivatives which have only weak activity.<sup>12)</sup>

The antimicrobial spectra of these four derivatives are shown in Table 2. The antibacterial activity assayed by the cup plate method using *Bacillus subtilis* PCI 219 and *Escherichia coli* K-12 as test organisms is shown in Table 1. These 1-N-acyl derivatives of 3',4'-dideoxy-6'-N-methylkanamycin B are broadly active against kanamycin-resistant strains producing 3'-phosphotransferases I and II, 2''-nucleotidyltransferase, and 6'-N-acetyltransferase (*Escherichia coli* K-12 R5 and *Pseudomonas aeruginosa* GN315). The AHB-MDKB compound was especially effective against kanamycin-resistant strains.



Hamao Umezawa Katsuharu Iinuma Shinichi Kondo Masa Hamada Kenji Maeda

Institute of Microbial Chemistry Kamiosaki, Shinagawa-ku, Tokyo, Japan

(Received January 14, 1975)

## References

- UMEZAWA, H.; S. UMEZAWA, T. TSUCHIYA & Y. OKAZAKI: 3',4'-Dideoxykanamycin B active against kanamycin-resistant *Escherichia coli* and *Pseudomonas aeruginosa*. J. Antibiotics 24: 485~487, 1971
- YAGISAWA, M.; H. NAGANAWA, S. KONDO, T. TAKEUCHI & H. UMEZAWA: 6'-N-Acetylation of 3',4'-dideoxykanamycin B by an enzyme in a resistant strain of *Pseudomonas* aeruginosa. J. Antibiotics 25: 495~496, 1972

- 3) YAGISAWA, M.; H. NAGANAWA, S. KONDO, M. HAMADA, T. TAKEUCHI & H. UMEZAWA: Adenylyldideoxykanamycin B, a product of the inactivation of dideoxykanamycin B by *Escherichia coli* carrying R factor. J. Antibiotics 24: 911~912, 1971
- 4) NAGANAWA, H.; M. YAGISAWA, S. KONDO, T. TAKEUCHI & H. UMEZAWA: The structure determination of an enzymatic inactivation product of 3',4'-dideoxykanamycin B. J. Antibiotics 24: 913~914, 1971
- 5) YAGISAWA, M.; H. NAGANAWA, S. KONDO, T. TAKEUCHI & H. UMEZAWA: Inactivation of 3',4'-dideoxykanamycin B by an enzyme solution of resistant *E. coli* and isolation of 3', 4'-dideoxykanamycin B 2''-guanylate and 2''-inosinate. J. Antibiotics 25: 492~494, 1972
- KONDO, S.; K. IINUMA, H. YAMAMOTO, K. MAEDA & H. UMEZAWA: Syntheses of 1-N-[(S)-4-amino-2-hydroxybutyryl]-kanamycin B

and -3',4'-dideoxykanamycin B active against kanamycin-resistant bacteria. J. Antibiotics 26: 412~415, 1973

- 7) KONDO, S.; K. IINUMA, M. HAMADA, K. MAEDA & H. UMEZAWA: Syntheses of isoseryl derivatives of kanamycins and their antibacterial activities. J. Antibiotics 27: 90~93, 1974
- 8) UMEZAWA, H.; M. OKANISHI, S. KONDO, K. HAMANA, R. UTAHARA, K. MAEDA & S. MITSUHASHI: Phosphorylative inactivation of aminoglycosidic antibiotics by *Escherichia coli* carrying R factor. Science 157: 1559~ 1561, 1967
- 9) UMEZAWA, H.; H. YAMAMOTO, M. YAGISAWA, S. Kondo, T. TAKEUCHI & Y.A. CHABBERT: Kanamycin phosphotransferase I: Mechanism of cross resistance between kanamycin and lividomycin. J. Antibiotics 26: 407~411, 1973.
- 10) YAGISAWA, M.; H. YAMAMOTO, H. NAGA-NAWA, S. KONDO, T. TAKEUCHI & H. UMEZAWA: A new enzyme in *Escherichia* coli carrying R-factor phosphorylating 3'-

hydroxyl of butirosin A, kanamycin, neamine and ribostamycin. J. Antibiotics 25:  $748 \sim 750$ , 1972

- UMEZAWA, H.; Y. NISHIMURA, T. TSUCHIYA & S. UMEZAWA: Syntheses of 6'-N-methylkanamycin and 3',4'-dideoxy-6'-N-methylkanamycin B active against having 6'-N-acetylating enzymes. J. Antibiotics 25: 743~745, 1972
- 12) KONDO, S.; K. IINUMA, H. YAMAMOTO, Y. IKEDA, K. MAEDA & H. UMEZAWA: Syntheses of (S)-4-amino-2-hydroxybutyryl derivatives of 3', 4'-dideoxykanamycin B and their antibacterial activities. J. Antibiotics 26: 705~707, 1973
- 13) OHSHIRO, S.; K. KURODA & T. FUJITA: Syntheses of optical active proline. Yakugaku Zasshi 87: 1184~1188, 1967 (C.A. 68: 40031 w, 1968)
- 14) NAGASAWA, T.; K. KUROIWA, K. NARITA & Y. Isowa: New agents for *t*-butyloxycarbonylation and *p*-methoxybenzyloxycarbonylation of amino acids. Bull. Chem. Soc. Jap. 46: 1269~1272, 1973